Receiver Operating Characteristic based on Power Lindley Distribution
Source:R/PLindleyROC.R
PLindleyROC.Rd
ROC curve analysis is performed assuming samples are from the Power Lindley distribution. Specificity, sensitivity, area under the curve and ROC curve are provided.
Usage
dPLD(x, alpha, beta)
pPLD(x, alpha, beta)
qPLD(p, alpha, beta)
rPLD(n, alpha, beta)
r.pl_auc(
x,
y,
init_param = c(alpha1 = 1, beta1 = 1, alpha2 = 1, beta2 = 1),
true_param = c(alpha1 = 1, beta1 = 1, alpha2 = 1, beta2 = 1),
method = c("MLE", "AD", "CvM", "LSE", "WLSE", "TRUE")
)
r.pl_index(
x,
y,
init_param = c(alpha1 = 1, beta1 = 1, alpha2 = 1, beta2 = 1),
init_index = 1,
true_param = c(alpha1 = 1, beta1 = 1, alpha2 = 1, beta2 = 1),
method = c("MLE", "AD", "CvM", "LSE", "WLSE", "TRUE")
)
r.pl_graph(
x,
y,
init_param = c(alpha1 = 1, beta1 = 1, alpha2 = 1, beta2 = 1),
true_param = c(alpha1 = 1, beta1 = 1, alpha2 = 1, beta2 = 1),
empirical = TRUE,
method = c("MLE", "AD", "CvM", "LSE", "WLSE", "TRUE")
)
Arguments
- x, y
vector of quantiles.
- alpha
shape parameter.
- beta
scale parameter.
- p
vector of probabilities.
- n
number of observations. If
length(n) > 1
, the length is taken to be the number required.- init_param
initial paremeter values for the estimation method.
- true_param
true parameter values.
- method
estimation method. The default value for the method is "MLE".
- init_index
initial index value for the optimization calculation.
- empirical
empirical must be TRUE or FALSE.
- alpha1
shape parameter of distribution of first sample.
- beta1
scale parameter of distribution of first sample.
- alpha2
shape parameter of distribution of second sample.
- beta2
scale parameter of distribution of second sample.
Value
dPLD
gives the probability density function of Power
Lindley Distribution.
pPLD
gives the cumulative density function of
Power Lindley Distribution.
qPLD
gives the quantile function of
Power Lindley Distribution.
rPLD
gives random numbers from Power Lindley Distribution.
r.pl_auc
gives the Area Under the Curve (AUC) when the data
conforms to the Power Lindley Distribution.
r.pl_index
gives index values when the data conforms to the
Power Lindley Distribution.
r.pl_graph
gives the ROC curve when the data conforms to the
Power Lindley Distribution.
Details
The probability density function (PDF) and cumulative distribution function (CDF) are as follows: $$f\left( x;\boldsymbol{\theta }\right) =\frac{\alpha \beta ^{2}}{ \beta +1}\left( 1+x^{\alpha} \right) x^{\alpha -1}\exp \left( -\beta x^{\alpha }\right)$$ $$=zg_{1}\left( t\right) +\left( 1-z\right) g_{2}\left( t\right),$$
$$F\left( x;\boldsymbol{\theta }\right) =P\left( X\leq x\right) =1- \left( 1+zx^{\alpha } \right) \exp \left( -\beta x^{\alpha }\right),$$ and quantile function is given by $$Q\left( u;\boldsymbol{\theta }\right) =F^{-1}\left( u; \boldsymbol{\theta }\right) =\left\{ -\frac{W\left( \left( 1+\beta \right) \left( -1+u\right) \exp \left( -\left( 1+\beta \right) \right) \right) +1+\beta } {\beta }\right\} ^{\frac{1}{\alpha }},$$ where $$z =\frac{\beta }{\beta +1},$$ $$g_{1}\left( x\right) =\alpha \beta x^{\alpha -1}\exp \left( -\beta x^{\alpha }\right),$$ $$g_{2}\left( x\right) =\alpha \beta ^{2}x^{2\alpha -1}\exp \left(-\beta x^{\alpha }\right),$$ \(\boldsymbol{\theta =}\left( \alpha ,\beta \right) \), \(0<u<1\), \(\alpha>0\) is a shape parameter, \(\beta>0\) is a scale parameter and W(•) is Lambert W function.
Additionally, the estimation methods Anderson-Darling "AD", Cramér-von Mises "CvM", least squares "LS" and weighted least squares "WLS" as well as the "TRUE" option for the true value, are available. Please note that the default value for the method parameter is maximum likelihood "ML" estimation.
The cut-off point values corresponding to Youden's J index (J), the criterion closest to (0, 1) (ER), the concordance probability method (CZ), and the newly proposed Ertan-Coskun index (EC) are provided.
References
Akgenç, E., and Kuş, C., 2023, ROC Curve Analysis for the Measurements Distributed Power-Lindley Distribution, 2nd International E-Conference On Mathematical And Statistical Sciences: A Selçuk Meeting (ICOMSS-2023), Konya, 25.
Attwood, K., Hou, S., and Hutson, A., 2022, Application of the skew exponential power distribution to ROC curves, Journal of Applied Statistics, 1-16.
Ghitany M., Al-Mutairi D. K., Balakrishnan N., and Al-Enezi L., 2013, Power lindley distribution and associated inference, Computational Statistics & Data Analysis, 64,20–33.
Liu, X., 2012, Classification accuracy and cut point selection, Statistics in medicine, 31(23), 2676-2686.
Nahm, F. S., 2022, Receiver operating characteristic curve: overview and practical use for clinicians, Korean journal of anesthesiology, 75(1), 25-36.
Perkins, N. J., and Schisterman, E. F., 2006, The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve, American journal of epidemiology, 163(7), 670-675.
Pundir, S. and Amala, R., 2014, Evaluation of area under the constant shape bi-weibull roc curve, Journal of Modern Applied Statistical Methods, 13(1),1-20.
Youden, W. J., 1950, Index for rating diagnostic tests, Cancer, 3(1), 32-35.
Examples
dPLD(c(1,2,3,4,5,200),alpha=3,beta=2)
#> [1] 1.082682e+00 1.620507e-05 3.560890e-21 1.070039e-52 3.363180e-105
#> [6] 0.000000e+00
pPLD(c(.5,1,2,3,4),alpha=3,beta=2)
#> [1] 0.1562992 0.7744412 0.9999993 1.0000000 1.0000000
qPLD(c(.9971,0.5,0.3),alpha=3,beta=2)
#> [1] 1.5220612 0.7868721 0.6362570
rPLD(10,alpha=3,beta=2)
#> [1] 0.3968803 1.0600360 0.8598761 0.5010362 0.1772106 0.7626490 0.7852732
#> [8] 0.6277847 0.9632404 0.9982308
r.pl_auc(x=c(1,2,2,3,1),y=c(1,3,2,4,2,3),
true_param=c(alpha1=1,beta1=1,alpha2=1,beta2=1),method=c("TRUE"))
#> [1] 0.5
r.pl_index(x=c(1,2,2,3,1),y=c(1,3,2,4,2,3),init_param=c(1,1,1,1),
init_index=1,method=c("MLE"))
#> Cut-off Point Sensitivity Specificity 1-Specificity
#> J 2.257651 0.5843951 0.7345488 0.2654512
#> ER 2.128638 0.6365278 0.6790223 0.3209777
#> CZ 2.155423 0.6258267 0.6909883 0.3090117
#> EC 2.049502 0.6676484 0.6424604 0.3575396
x=c(1,2,2,3,1)
y=c(1,3,2,4,2,3)
r.pl_graph(x,y,init_param=c(1,1,1,1),
empirical=TRUE,method=c("MLE"))